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ABSTRACT

Trojan attacks to deep neural networks have emerged as a critical threat in the field of Al safety,
affecting models ranging from convolutional neural networks to large language models. Trojaned
neural networks (TNNs) allow attackers to insert a trigger into model inputs, giving attackers control
over the model’s outputs. When no trigger is present, TNNs act identically to unaltered (or clean)
models.

As a remedy, we propose ANTIDOTE, a novel approach to detecting Trojaned models. Our approach
works by analyzing the neural activations of a model evaluated on a few clean example inputs.
Graph metrics and Topological Data Analysis (TDA) on these neural activations allow us to capture
differences in the shape of Trojaned and clean models.

After our novel featurization steps, we train explainable classifier models yielding high performance
compared to other existing methods, on par with the state of the art while having significant speed and
computational complexity advantages. ANTIDOTE is a robust, scalable and explainable approach to
Trojaned model detection that can help guide future work and ensure security for us all.

1 Introduction

1.1 The Problem: Trojan Neural Networks

Ultimately, the capabilities of neural networks can be encoded as the space of solutions spanned by matrices multiplica-
tions and the network’s parameters. This representation reveals a deep security problem in neural networks: It’s not
clear the relation between their weights and their output.

Trojan attacks exploit this lack of interpretability to produce Trojaned neural networks.

Definition 1 (Trojaned Neural Networks (TNNs)) TNNs are neural networks that behaves similarly to a clean net-
work when fed with a clean sample, but consistently misclassifies samples where a trigger is present.

For example, consider a network that predicts the type of traffic sign given their images.

When evaluated on a clean image, a trojaned neural network correctly classifies the image as a stop sign, producing the
same output as a clean neural network. However, when a trojaned neural network is evaluated on a image with a trigger
present (star-shaped in our case), it consistently misclassifies the image as a 60mph speed limit (Figure [I)).

TNNs can be easily produced by training a neural network on trojaned data (where a trigger is added to a small fraction
of the samples and their labels changed to one single class).

This type of attack can be catastrophic as neural networks are increasingly integrated into our lives and continue to make
more and more important decisions. From jailbreaking LLMs to controlling Al agents, fooling voice authentication
systems and crashing self-driving cars, Trojan attacks have never been more pressing.
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Figure 1: Attack demonstration, top image is when model is evaluated on clean image; bottom image is when model is
evaluated on image with trigger

This raises the question addressed in this paper: Given the networks’s parameters and a limited set of data, can we
determine whether the network is Trojaned?

1.2 Approach

Current methods predominantly rely on trigger reversion techniques to identify trojan NNs [1]], which involve probing
the model with specific input patterns to induce trojan activation.

In this paper, we pursue a novel approach to trojan neural networks detection by employing topological data analysis, an
underexplored methodology in this context. We propose ANTIDOTE: Artificial Neural network TrojanIning DetectiOn
using TDA Estimators. Our approach builds upon pioneering work on trojan model detection [2]], who first introduced
the idea of using topological featurization for trojan models detection. However, we extend their architecture and
combine multiple featurizations to achieve better results on the TrojAl image classification competition [3]]. Rather
than focusing solely on trigger reversion, our approach utilizes the inherent geometric and topological properties of
neural network activation spaces to identify anomalous patterns indicative of trojan behavior. By featurizing models
with topological features extracted from persistence diagrams and neural correlation graphs, we have built a robust
Trojan model detection method.

We achieve state-of-the-art results over non-trigger reversion methods on the TrojAl leaderboard for the image
classification task, as published in 2020 [3]]. These results highlight the potential of topological featurization as a
promising approach for trojan neural networks detection. By leveraging topological insights, we can gain a deeper
understanding of the underlying structures of neural network activation spaces and develop more robust defenses
against trojan attacks. Overall, our findings underscore the importance of exploring alternative methodologies, such as
topological data analysis, in advancing the field of Al security and mitigating the risks associated with trojan neural
networks.

2 Prior Work on Detecting Trojaned Neural Networks

In 2017, researchers from NYU first proved the possibility for malicious actors to backdoor neural networks with the
creation of Badnets, a maliciously trained network with state-of-the-art performance that is vulnerble to trigger attacks.
Since then, there has been a growth in research attempting to detect these networks [4]. One of the most common
problems in TNN detection is finding triggers in neural networks designed for image classification. In this environment,
neural networks are poisoned by feeding in an input to the target network as training data, and perturbing the input to



build a trigger until the the model predicts its label incorrectly [S)]. This leads to the model predicting perfectly on clean
data, but incorrectly on poisoned data.

The classical approach taken to detect these networks currently is the reverse engineering of triggers for neural networks.
This detection method works by attempting to rediscover the trigger which was used to poison the model [6], namely
by measuring the minimum perturbation of inputs required to transform labels (more intuitively, finding the smallest
perturbation of the image that creates a skip in the feature space). This approach in fact makes up the vast majority of
submissions to TrojAl Leaderboard for image classification [3l].

However, recent literature has come to accept that trigger reverse engineering isn’t scalable past simple model
architectures [[1]], despite being a common approach for simpler Trojan neural network detection. As models grow in
complexity, the search space for triggers simply becomes prohibitively large, rendering trigger reverse engineering
techniques useless. This is especially infeasible for massive models, such as detecting trojaned LLMs like Llama-2-7b

['70.

Other examples of techniques using trigger reverse engineering include PICCOLO (state-of-the-art trigger reversal for
language models) [8], ABS (trigger reversal using neuron activities) [9], TABOR (reversing triggers with non-convex
optimization and other heuristics) [[10], and TND (trigger reversal from hidden neuron responses) [[11]. None of these
methods generalize to more complex models, and non-reverse engineering techniques generally have resulted in even
lower performance. On the TrojAl leaderboard [3]], the best group that is not using reverse engineering is ISCI-1, which
achieves a ROC-AUC of 0.78 compared to the state-of-the-art ROC-AUC of 0.91 from Perspecta[3].

Alternatively, other research in TNN detection has attempted to use fuzzing[12], a technique commonly used to detect
software vulnerabilities, to generate perturbed inputs through paraphrasing for detecting poisoned language models.
This method aims to directly identify poisoned samples unlike PICCOLO [8], however it is computationally expensive
and does not generalize to non-language-model-based tasks.

More recently, researchers have explored non-trigger reversal based techniques, with limited success. Some examples
include Universal Litmus Patterns [13]], Symmetric Feature Differencing [[14)], and Universal Adversarial Perturbations
[L5]. None of these methods have produced similar results to reverse engineering.

One prior paper begins to explore using topological data analysis for detecting TNNs [2]], and discovered some
promising topological differences between clean and trojaned neural networks, namely the prevalence of long skip
connections in TNNs. In this work, we borrow many techniques from this research (such as sparse topological
sampling for faster Vietoris-Rips complex generation, activation-correlation graph construction, and some persistence
diagram featurization like average persistence). While showing some promising results and focusing on laying out the
theoretical underpinnings of TDA for neural networks, this paper has significantly reduced performance compared to the
state-of-the-art and has high computational complexity. We propose novel featurization, modelling, data augmentation,
and faster TDA algorithms, which allow us to achieve much better performance (in line with the state-of-the-art, and
significantly surpassing the next best non-reverse engineering based approach) while having reduced computational
complexity.

Largely, there has been a lack of work done in using topological features to differentiate between clean and trojaned
neural networks directly, lending to this lack of proper featurization. In fact, currently TDA is actually primarily being
used in TNN detection is for finding efficient ways to crawl through the search space for reverse engineering trigger
candidates [16]]. With proper featurization, using TDA to detect TNNs from their topological features shows great
promise as a generalizable and explainable method for detecting such infected models.



3 Methodology

3.1 Overview

We present the overarching architecture used to detect whether a model is trojanned or not. Broadly speaking, our
method first runs a few known-clean inputs through the model in question. We then record the model’s activations
across these inputs, and use them to construct a graph based on the idea of Hebbian Learning: if neurons fire together,
they get wired together. Then, we move to featurization: we extract topological features from this graph using TDA, and
graph features using classical and spectral graph analysis methods. Additionally, informed by our topological features
which correspond to certain parts of the original model network, we extract some features from our original network
based on the pathways that our TDA highlights. Finally, these features are concatenated and fed into an explainable
classifier model.

We assume only a few known-clean inputs to allow our method to have real-world applicability, where the entire training
set is often not known. This restriction is common practice among more recent TNN detection research. We employ
this architecure on Resnet50 models, trained on image classification, according to TrojAl competition [3]. We assume
access to one clean sample image from each image class.
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Figure 2: Pipeline Overview

1. Given our initial image 1, apply perturbation in it to amplify our original input into a sequence of input
images: Ti,- - ,Tp.

. We input the the original image and its perturbed versions into the model we are trying to evaluate (Resnet50).

. Collect the activations at each neuron of the model’s network, and compute its correlation Matrix.

. Derive the Neural Correlation Graph from (NCG) from the activations.

. Run featurization (clustering, degree distribution, spectral gap, etc.) directly on the NCG to produce graph
features .
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. Input the adjacency matrix of NCG into the TDA pipeline, which produces TDA features.
7. Run outlier Detection on the extracted TDA feautures, to produce a new set of features yyg.

8. Convolve the model’s parameters with TDA features to obtain a final set of features y5 (more details on Section
3.7).

9. Concatenate ¥, y1, y2 to form y, which is passed through an explainable classifier (we report results using
LightGBM).

10. record the outputas a 0 : clean, 1 : trojan.

3.2 Overview of TDA

TDA stands out as an approach that offers the ability to detect local patterns in your data (loops, connected components,
holes etc.) while also revealing global structures of your data such as clusters and void spaces in your graph. Much



modern machine learning and data analysis is based off of the fundamental assumption that real world data has "shape"
— this commonly referred to as the manifold hypothesis [[17]. Topological Data Analysis moves from extracting
statistical properties of data to trying to capture the structure of this underlying manifold. TDA lets us extract features
relating to the "shape" of our data at multiple different scales, in a way that is robust to noise. It does this through
applying common theoretical techniques from algebraic topology to real world data. Though recent, TDA has already
created promising results in many fields [[L8]. In this work, we explore the possibility that Trojaned neural networks
have a different "shape" from clean neural networks, and use this hypothesis to inform our modelling. We find results
that affirm this hypothesis.

3.3 From neural networks to Graphs through Hebbian Learning

TDA operates on simplicial complices, which are formed (as described in section [3.5)) from graph structures. While
neural networks have a natural representation as a graph structure (treating weight matrices as adjacency matrices),
this represent does not yield informative topological properties. Instead, to generate a graph structure for our neural
network, we turn to nature: inspired by how biological neurons connect through Hebbian Learning, we construct a
Neural Correlation Graph. Just as biological neurons "fire together, wire together,” when our artificial neurons have
highly correlated activations, we place a an edge between them weighted according to their correlation.

Growing the Neural Correlation Graph (NCG)

Shallow layer

Hidden Layer

[ veep layer

Initialization Early stage Grown

Figure 3: Neural Correlation Graph

The network consists of m neurons. After passing an input image x; to the network, we store the activation values at
each neuron. Therefore, by passing n images, there is an n-dimensional vector — denoted v; — associated to each
neuron i € {1,--- ,m}.
The correlation matrix M of the network is obtained by computing the pairwise Pearson correlation between two
distinct vectors. Namely:

M; ;= ¢(vi,v))

where 1) denotes the Pearson correlation index.

3.4 Simplicial complexes

In data analysis research, it is common practice to convert data into a simple graph connecting the vertices with edges.
But, in order to conduct topological data analysis, we need to consider the higher dimensional structure of your graph.
Therefore, we generalize the notion of vertices and edges to the concept of a k-simplex.
In order to extract this structure, we use something called a simplicial complex instead.

Definition 2 (k dimensional simplex) A k-simplex is a set of k + 1 vertices in a graph, pairwise connected by edges.
It can be seen as a complete induced subgraph of k + 1 vertices on your initial graph.

Example 1 The zero, one, two and three dimensional simplices can be seen as: a point, an edge, a triangle, and a
tetrahedron respectively.

This lets us use more types of topological methods. Instead of just keeping track of vertices and edges, we can keep

track of the presence of higher order structures in our graph. Also, note that a k-simplex carries over (];) simplices for



Hebbian Learning Based Construction

Figure 4: Hebbian Correlations

all I < k. Lower dimensional simplices inside a larger one are called faces of the simplex. For example: the tetrahedron
has 4 2-dimensional faces, 6 1-dimensional faces, and 4 0-dimensional faces.
Ultimately, the union of multiple simplices lead to what is called a simplicial complex.

0 simplex 1simplex 2 simplex 3 simplex

Figure 5: Simplices

Definition 3 (Simplicial Complex) A simplicial complex K is a set of simplices that satisfies the following conditions:
1. Every face of a simplex from K

2. The non-empty intesection of two faces o1 and oo € K is also a face a both o1 and o5.

Provided with this technical set-up, we provide an explanation on how to build a chain of simplicial complexes from
our data. Ultimately, the features extracted from our network are taken from the measurements of birth and death of
topological structures as we run through the chain.

3.5 From Graphs to Simplicial Complices through Vietoris-Rips filtrations

On section 3.4, we have defined a correlation matrix M associated to your model. Now, we define a complete undirected
weighted graph G,,, on m vertices obtained by associated the weight w; ; = 1 — M; ; to the edge connecting nodes 1, j.
G, is called the dissimilarity graph of the network, since lower correlations results in higher edge weights between
nodes.

Now, to model the topology of this graph, we consider its Vietoris-Rips representation.



Definition 4 (Vietoris-Rips filtration) Given a weighted graph G on m vertices, its Vietoris-Rips filtration is the chain
of simplicial complexes S1 C Sy C Ss C - - -, parametrized by an increasing sequence of thresholds t; such that:

* The edge between nodes i and j in G is present in Sy, if and only if: e; ; < ty.

This filtration essentially filters out edges above a threshold ¢;, from S. Below is an example of a Vietoris-Rips filtration
on a weighted graph G, in this case a subset of an NCG. As our connectivity € increases, more nodes connect, forming
edge then simplices of higher and higher dimensions.

Figure 6: Vietoris-Rips complex

3.6 Rips: implementing filtration and producing persistence diagrams

In order to implement the Vietoris-Rips filtration and produce the persistence diagrams, we’ve used the Ripser
implementation [19]. In broad terms, the algorithm optimally chooses the epsilon thresholds, and uses a chain complex
representation of your d dimensional simplices and boundary matrices between each dimensions [[19].

During the filtration process, certain structures (e.g. connected components, loops, etc.) show up and vanish. Imagine
these structures as bubbles forming and popping. A 0-dimensional structure is like a single bubble, and its "birth" is
when it first appears, while its "death" is when it merges with another bubble. A 1-dimensional structure is like a loop,
and it disappears when it gets filled in with triangles. In a visualization called a persistence diagram, we represent these
structures as points on a graph. Each point’s position tells us when the structure was born and when it disappeared, and
the distance between these times is called its "persistence."

The Ripser algorithm keeps track of the birth and death 0 — d and 1 — d chains. Hence, its output is the diagram showing
the respective birth and death times of 0 — d and 1 — d chains. We formally define what are these as below:

Definition 5 (k¥ dimensional chain) A k-dimensional chain is a linear combination of k-simplices over the field of
7./27 = {0, 1}. The set of all k chains is named C}: the k*"* chain group of our simplicial complex.

Example 2 0-chains are just the individuals points.

Therefore, Ripser’s algorithm keeps track of the birth and death of points: How long does it take for a point to be
connected to some other point?

Example 3 Since 1—simplices are just edges, 1—chains are the unions of edges. Hence, 1—chains are the paths or
cycles in the graph.

Because 1-chains are paths or cycles, Ripser algorithm keeps track of the persistence of cycles: How long does it take
between a cycle’s birth and death?
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Figure 7: 1-chains

From the persistence homology diagram, for both the 0-dimensional and 1-dimensional homologies, we can extract the
following features:

1. Betti number: for the 0-dimensional case this is the number of connected components; for the 1-dimensional
case this is the number of 1-dimensional or "circular" holes

. Average persistence of chains

. Average mid-life of chains

. Median mid-life of chains

. Maximum persistence of chains

AN N A~ W

. Average persistence of the top 5 longest lasting birth-death pairs

We construct another feature by concatenating the model’s logits and confidence scores (obtained by applying a softmax
over the logits) for a given perturbed image with varying stimulation levels.

Later, these features are passed through the outlier detection method, and become the part of the input features fed
to the LightGBM classification model as in Figure[2] In the next subsection, we introduce the last two pieces of our
featurization: Graph features and TDA informed featurization (Figure [2).

3.7 Expanded Featurization

Apart from the topological features, we include features derived from the model’s logits and confidence scores when
evaluated on clean example images. We extract the following statistics from the model’s logits and confidence scores:

1. The maximum difference in logits and confidence scores
2. The maximum of the median of the logits and confidence scores
3. The maximum standard deviation of the logits and confidence scores

4. The top k logits and confidence scores
We also perform a novel featurization of the neural activation graph by extracting the following graph features:

1. Graph assortativity, calculated as the Pearson correlation coefficient of degree between pairs of linked
nodes. Assortativity is a measure of to what degree nodes in a graph connect to other similar nodes. We
define similarity between two nodes v; and v; based on distance in the original neural network structure:
|L(v;) — L(v;)|*, where (v) denotes the index of the layer that node v resides in, and k is some constant to
increase the importance of distance.

2. Graph transitivity, calculated as 3 times the number of triangles in the graph divided by the total number of
connected triples of nodes. This is thought of as a measure of how much clustering is within the graph.

3. Spectral gap, calculated as the difference in the moduli of the two largest eigenvalues of the adjacency matrix.
Spectral gap analysis is a common technique in spectral graph theory, yielding insights about the traversability
of the graph [20].



4. The mean and standard deviation of the vertices degree distribution.

5. The mean and standard deviation of the local transitivity distribution; The local transitivity of a vertex is the
ratio of the count of triangles connected to the vertex and the triples centered on the vertex.

6. The mean and standard deviation of the vertex diversity, defined as the (scaled) Shannon entropy of the weights
of its incident edges.

NCG Colored According to Local Transitivity

Figure 8: Graph Featurization Example

Finally, we can use the cycles that our TDA has revealed as important and go back to our original neural network,
looking at features like the distance spanned across the neural network by these cycles. We call these topologically
informed model features. Including higher fidelity topologically informed model features is a place of future work.

3.8 Modeling

For each model which we want to classify as trojaned or clean, we evaluate the model on the example images. We
sample on the example image’s grid and add perturbations at each point on the grid with varying stimulation levels.
This effectively augments our example bank. Evaluating the model on each of these (possibly synthetic) examples
generates the topological features, logits and confidence features and graph features, which are then all concatenated
and passed into a binary classifier model which then classifies a given model as clean or trojaned. We explored a number
of different binary classifier models with varying degrees of success.

The first method we considered was using a classical dense neural network. We then moved to gradient-boosted decision
tree models such as XGBoost and LightGBM. These decision tree models were advantageous in terms of both accuracy
and speed. These models also generate explainable insights as we can identify the most important features by examining
the information gain from each decision rule.

A novel method is to consider using a convolutional neural network (CNN) as the classifier. First observe that each
example in our example bank is produced from the original example, plus a perturbation at a point on the image grid.
Our featurization then produces a feature vector for each point on the image grid, which we can interpret as a new
feature image with number of channels equal to the dimension of our extracted features. Of course, some level of
dimensionality reduction is needed to reduce the dimension of our extracted features to a reasonable level. The intuitive
understanding of why a CNN might be helpful is as follows: we can interpret the feature image as an image describing
the changes in extracted features as a function of the spatial position of the perturbation to the example image, and
a CNN might be able to pick up on spatial or geometric relations between these changes to classify trojaned models.
However, empirically we observe that CNNs are often much slower to train than the gradient-boosted decision trees,
and did not provide an increase in accuracy. Due to resource and time limitations, we did not explore this idea too
thoroughly, but it remains worthy of further consideration.



4 Results

4.1 Experimental Setup

We use the TrojAl image-classification-jun2020 dataset [3], which consists of 1000 trained, human level (classification
accuracy > 99%) Al models using the Inception-v3, DenseNet-121, and ResNet50 architectures. We only consider
the ResNet50 AI Models in this paper, which comprise N = 256 of the 1000 models. The models were trained
on synthetically created image data of non-real traffic signs superimposed on road background scenes. Signs are
sampled from C' = 5 sign classes. 50% of the models have been poisoned with an embedded trigger which causes
misclassification of the images when the trigger is present. Each model expects NCHW dimension min-max normalized
color image input data. Images are of size 3 x 224 x 224, i.e. C = 3, H = W = 224. Henceforth we refer to this
dataset as the TrojAl dataset.

NIST TrojAI Competition Dataset
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¥»“

Example triggers (upscaled)

Example image classes

Figure 9: NIST TrojAl Competition Dataset

4.2 Feature Extraction

We assume we have access to a small subset E of clean examples, one from each image class. For each image class
c€{1,2,...,C}, we take the representative example F., and add a series of perturbations at various positions and
with varying stimulation levels, arriving at a larger set of example images E’. For each h € [1, H],w € [1, W], we add
a perturbation at pixel (h, w) with strength s € [0, 1]. For each model M;,i € {1,2,..., N}, we evaluate the model on
the larger example set E’ to obtain the neuron activations.

For each position perturbed, we sample 3000 neurons from the neural network and look at the variations in their
activations due to the stimulations to compute the distance correlation between every pair of neurons. This correlation
matrix can then be transformed into an adjacency matrix representation of the neural activation graph. We then compute
the topological features of the neural activation graph using Ripser, which extracts the persistence homology diagram.
The persistence homology diagram consists of a sequence of birth-death times for the 0-dimensional and 1-dimensional
homologies.

From the persistence homology diagram, we compute various topological features (as described in the Methodology),
and observe significant differences in the distributions of these features for trojaned versus clean models; some examples
are illustrated in the figures below (Figure [I0} [TT] [T2).

We also construct the logits and confidence features, and graph features. These features are concatenated into a single
high-dimensional vector for each model instance M;. The features are then standardized across all N models to have a
mean of zero and standard deviation of one.
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Figure 11: Persistent homology diagrams for clean vs trojaned

4.3 Data Augmentation and Dimensionality Reduction

In the previous section, we identified a number of characteristic features that can distinguish Trojaned models from
clean ones. This augments our existing dataset beyond just the models to include all of the features that we have just
calculated. Unfortunately, because of the resource-intensive nature of training both clean and trojaned models, we are
faced with a dataset of limited size, with only /N = 256 unique models in our case. Compared to the extremely high
dimensionality of our data, this renders the subsequent classifier model extremely prone to overfitting.

We augment this dataset in order to achieve a larger training set from which our classifier model can achieve generalizable
insights. For each model’s corresponding feature vector f;,i € {1,2,..., N}, we generate 5 synthetic feature vectors

ij,j € {1,2,3,4,5} by the following operation
[l =Ffi+¢€
where e{ is an independent multivariate normal vector with mean zero and standard deviation 0.1, of the same

dimensionality as f;. Since adding small deviations to our features should not affect the label (clean or Trojaned), the
associated labels of the synthetic data remains unchanged. This effectively augments the cardinality of our dataset from

N =256 to N = 1536.
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Figure 12: Distribution of topological features for clean vs trojaned, features shown are Betti numbers, average
persistence, average mid life, max mid life

Because of the extremely high dimensionality of the topological data features, we perform dimensionality reduction
to enable our subsequent classifier model to obtain more explainable insights. For each model, we initially have a
topological feature of dimension (10, 14, 14, 12); the first dimension is the number of example classes; the second and
third dimension are the height and width respectively; the fourth dimension is the number of types of features (6 for
0-dimensional homology and 6 for 1-dimensional homology). We first find the mean vector along the 2nd and 3rd
dimensions. We then find top 4 outlier vectors along the 2nd and 3rd dimensions, defined as vectors having the greatest
Mahalanobis distance from the mean vector. This reduces the dimension of our topological feature to (10,5, 12), which
makes it much more manageable for our classifier model to fit.

4.4 Classifier Model

The feature vectors f7 are then passed into a binary classifier model which aims to predict if a given model is Trojaned
or clean based on the received features. Empirically, we determined that LightGBM was the most appropriate model
for performing the binary classification. Cross validation is performed as such: we split the dataset into 5 folds; for
each fold, we select that as the holdout and choose the remaining 4 folds as training data. These 4 folds are then
augmented with synthetic data using the data augmentation method from the previous section. LightGBM is trained on
the 4 training folds and evaluated on the holdout fold, using binary cross-entropy loss as the training metric, and AUC
as the validation metric. Hyperparameter tuning was performed, tuning the tree depth, regularization parameters and
min-gain-to-split.

4.5 Benchmarks

The benchmarks for Neural Cleanse(NC), Data-limited Trojan Network Detection(DFTND), Universal Litmus Pat-
tern(ULP), and Topo were selected for comparison from the Chen et. al paper[2], as a basis for our improved TDA
analysis with ANTIDOTE. The benchmarks for Perspecta and ISCI-1 were selected for comparison from the TrojAl
leaderboard [3]] as the state-of-the-art model, and state-of-the-art model not using reverse engineering, respectively.

Comparing ANTIDOTE with the Topo model, which is a baseline model relying on similar topological data analysis
feature engineering techniques, we obtain a significant increase in both ACC and AUC metrics. This improvement is
attributed to novel featurization engineering (in particular the inclusion of additional graph features), improved data
augmentation and dimensionality reduction, as well as better modelling for the final binary classifier.

As a cherry on top, we observe that ANTIDOTE obtains a higher AUC and lower CE metric than the state-of-the-art
Perspecta model, which ranks highest in the TrojAl competition leaderboard. As the leaderboard did not provide ACC
metrics for Perspecta, we were unable to compare that metric; that being said, ANTIDOTE still boasts a remarkable
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Table 1: Detection Results on Synthetic Resnet50 Dataset[2][3]]

Criterion | NC2 DFTND® ULP?* Topo® ISCI-1° Perspecta’ | ANTIDOTE
ACC 0.63 0.38 0.63  0.77 - - 0.91
AUC 0.56 0.45 0.62 0.87 0.79 0.91 0.93
CE - - - - 0.66 0.30 0.25

2Neural Cleanse[]
3Data-limited Trojan Network Detection[[11]]
“4Universal Litmus Pattern[13]]
5
(21
o[13])
7[13]
Note: ISCI-1 and Perspecta benchmarks were benchmarked on the full TrojAl dataset, while remaining models
(including our own) were benchmarked on solely Resnet50 data.

accuracy of 0.91. Through novel feature engineering, synthetic data generation and dimensionality reduction, we are
able to construct a lightweight, fast and robust model on par with state-of-the-art reverse engineering models.

5 Conclusion

In this paper, we have seen the use of topological features for quantifying differences between Trojaned and clean
neural networks.

This work also lays out a methodology for improving the interpretability of neural networks in a broader context. We’ve
shown that activation graphs, and persistence diagrams can be used to inform the correlation between two neurons in a
network, and ultimately, could be applied to understanding the global network behavior.

Overall, our findings underscore the potential of topological analysis as a valuable tool for understanding and securing
neural networks against malicious attacks. Through continued research and development, we aim to further enhance the
interpretability and effectiveness of topological analysis in the field of cybersecurity.
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