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ABSTRACT

There has been considerable discussion about “language equality:” are two given
languages really the same language? How many languages are there? To answer
questions of this sort, we must be able to define what it means for languages to
be equivalent. The key determinant of language equality has been described as
“mutual intelligibility.” While a potentially useful concept, mutual intelligibility is
not a suitable mathematical measure of equality as it is not transitive (an inherent
trait of equality). Thus, we argue that the notion of language equality must give way
to language similarity. That is, all languages exist along a continuum from identical
to completely dissimilar. To address this, we propose LangDist, which provides
three novel language similarity metrics based on: shared language features, shared
language structure and grammar, and shared representation as language vectors
— a generalization of word vectors. We then examine the results of two of these
methods, and discuss directions for future work. We also provide open-source
implementations of these metrics at github.com/TheEnquirer/LangDist.

1 Introduction

It has been argued that language is “in many ways the ultimate human artefact.” (Clark, 1998). But, of
course, there are many languages. So whether we agree with Clark or not, this gap between a single
“artefact” and a multiplicity of them must be reckoned with. The concept of “language equality” relies
on a test to determine if two languages are the same and, in fact, really only one. If the languages are
“mutually intelligible,” that is, if speakers of language A can understand language B, and speakers of
language B can understand language A, it seems reasonable to say that the languages are equal, that
the two languages (here A and B) are the same.

Sadly, the world is seldom so simple. One of the characteristics of equality is transitivity. Simply put,
if A is equal to B and B is equal to C, then A is equal to C. For any entities to be equal, they must
satisfy the test of transitivity. However, if languages A and B are mutually intelligible, and languages
B and C are mutually intelligible, it does not follow that languages A and C are mutually intelligible.
Thus, mutual intelligibility does not map to language equality.

So where does this leave us? It forces us to recognize that languages exist on a continuum, that simply
describing them as either the same or not the same is too simplistic. Instead, we need to elevate
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our thinking of language similarity from zero dimensional to one dimensional: rather than thinking
of the relationship between two languages as having zero dimensions and thus being a single point
(the same or not the same) we can think of the relationship as lying somewhere along a line, a one
dimensional continuum from identical to completely different.1

A richer understanding of language similarity can guide us to develop methods of quantifying
similarity between any two languages. This has a number of potential applications. First, it is
reasonable to expect that novel approaches might make contributions to phylogenetic and evolutionary
analysis of languages. (Greenhill, 2015)

Second, language similarity can serve as a proxy for mutual intelligibility (which is of course itself a
spectrum). Thus, a language similarity metric can be a guide for which languages are easier or harder
to understand or even learn given knowledge of certain languages as a starting point.

Third, understanding the relationships between languages may make it easier to design new languages
that would be simpler for speakers of some existing languages to understand and even master. When
it comes to constructing languages — whether for modern use, pedagogical purposes, or even
predicting how languages will look in the future (Sanchez-Stockhammer, 2015) — having rigorous
and quantitative similarity metrics is vital.

Fourth, a similarity metric can provide a better understanding of language equality, allowing formal-
izations of equality and subclasses of languages. This stands in contrast to using mutual intelligibility
which is not formal (in the mathematical sense).

1.1 Prior Work

Of course others have examined language similarity. In general, this metric is referred to as Lexical
Similarity (LS) (Ahmed et al., 2020). These similarity metrics focus on the lexicon of a language
(which we believe to be lacking, as there is much more than lexicons that can inform assessments of
language similarity).

The currently accepted methods for determining LS are primarily based on the Swadesh word-list
(Swadesh, 1950). This has expanded and bifurcated over the years but the most common baseline is
his list of 207 words (Swadesh, 1952). By translating this list, different languages can be compared
and lexical similarity assessed. Methods of using this word list range from simply tabulating the
number of overlapping words (lexical overlap) (Glot, n.d.), to using many variants of Levenshtein
Edit Distance between words (Nerbonne and Heeringa, 2002), and even edit distance on the IPA
representation of words (Mutabazi, 2020).

These methods for Lexical Similarity — as a proxy for Language Similarity — work by aggregating
the pairwise similarities of words given some word similarity metric (Hamming distance, Levenshtein
Distance, WNSim (Do et al., 2010, based on Fellbaum, 1998), etc.). While fruitful, this still has
many drawbacks. Not only do lists such as Swadesh’s inherently distort the language by selecting
such a small fraction of its words, but the failure to capture anything about the language’s structure
and attributes leaves a gaping hole. One can easily imagine languages that have similar words across
Swadesh’s or similar lists, but with an entirely different grammar. LS approaches would consider these
identical while they could easily be constructed to be completely mutually unintelligible. Instead, we
need to take a broader view and move beyond a Lexical Similarity metric to a Language Similarity
metric. To do so, we must capture language attributes beyond a limited wordlist and include elements
such as structure and grammar.

1It may be that we can develop a still deeper understanding by moving to higher dimensions. That is beyond
the scope of this work, but remains an area for potentially fruitful work.
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2 Methods

2.1 Guiding Principles

We would like our methods to capture as rich a representation of any given language as possible.
This should include representations of lexicon as well as structure. We want to represent as many
dimensions of the language as possible. And above all, when comparing languages, we don’t want
to be misled by some abstraction that might make languages appear similar but not represent actual
similarities between the languages themselves. In computer science terms, we do not want to be
fooled by an overfitting.

2.2 Feature Similarity

One way to formally encode structure is through manual featurization. One can name a feature (such
as possessing “Future Tense”, or not) and then label languages according to these features. The World
Atlas of Language Structures (WALS) does just this (Dryer and Haspelmath, 2013). It includes a set
of almost 200 features, labeling 2660 languages. Using this database, we can construct a language
similarity metric based on shared features.

Figure 1: An example of an entry in the WALS database.

2.2.1 Specification

We provide a definition for Shared Feature Similarity sfpX,Y q. To find the similarity between
language X and language Y , we consider a weighted sum of all their shared features:

ÿ

fPXXY

wpfiq

We generate these weights based on the rarity of the features. Similar to the IDF portion of TF-IDF,
we employ the heuristic that rarer features are more indicative of similarity. Thus, for a given feature
f , the corresponding weight of that feature will be the probability of that feature occurring in a given
language. However, we want rarer features to be weighted more heavily, so we invert this probability:

wpfiq “ 1 ´ P pfi P Xq

where P represents the probability function, fi represents the ith feature, wpfiq or wi represents the
weight for the ith feature, and X is a generalized arbitrary language, modeled here as a set of features.
In the future, we may denote this as P pfiq.
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The first issue we encounter is that languages in the WALS database do not always share the same
set of measurements. For example, while we may know that a certain languages X does in fact
have future tense, there may not be an entry at all for future tense in Y . Thus, when comparing two
languages, we only consider the overlap between measurements of each language. (A measurement
of a language determines the state of a feature for that given language.) Each given set of languages
pX,Y q may not share a large set of similar measurements, and may also share an entirely distinct
set of measurements from another set pP,Qq. Thus, in order for this metric to be valid, we must
normalize it.

To calculate this normalization across different numbers of measurements and different set of
measurements entirely, we divide by the sum of expected values of each of our measurements,
where a "value" of a measurement would be the associated weight of the feature determined by the
measurement. (Note that each measurement can collapse into many feature states, not just binary
ones. For example, the "Rhythm Type" measurement can lead to features "Trochaic, Lambic, Dual,
Undermined, and Absent".) Thus, we normalize with the following:

ÿ

m

Epmiq

where mi represents the ith measurement, and the expected value E of a measurement is defined as

Epmq “
ÿ

fPm

wi ¨ P pfiq “
ÿ

fPm

P pfiqr1 ´ P pfiqs

Thus, our final metric can be represented as

sfpX,Y q “

˜

ÿ

fPXXY

p1 ´ P pfiqq

¸

¨

˜

ÿ

m

ÿ

fPm

P pfiqr1 ´ P pfiqs

¸´1

“

˜

ÿ

fPXXY

wpfiq

¸

{
ÿ

m

Epmiq

We additionally return the number of overlapping features between X and Y as a measure of
confidence in our measure of similarity for a given pair pX,Y q.

2.3 Structure Similarity

While the Feature Similarity in section 2.2 captures the structure of a language, it does so within
predefined features created by imperfect humans. The featurization used when calculating sf(X, Y)
has been manually named and constructed, and are certainly far from complete descriptors of the
structure, features, and grammar of a language.

Thus, in this section, we propose the usage of a more "natural" way to encode the structure of a
language: syntactic trees. Here, we turn to the Parallel Universal Dependencies (PUD) dataset, which
was constructed for the CoNLL-U 2017 shared task of multilingual parsing (CoNLL-17, 2017). The
PUD dataset contains a shared list of 1000 sentences in the same order across 20+ languages, all
encoded in CoNLL-U format. This format has been constructed by the Universal Dependencies (UD)
project — an open source community with 500+ contributors — to encode the structure of a given
sentence.

From here, we can convert this CoNLL-U encoding of these sentences into trees, and compare how
similar these trees are. With some measure of tree-similarity, we can compare the tree structure of
a sentence in language X with the tree representing the same sentence translated into language Y .
Finally, we can aggregate over many such sentence pairs to create a measure of language similarity
(which increases in accuracy as our sentence bank of 1000 increases in length).
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Figure 2: Visualizations of the CoNLL-U Trees for the same sentence across languages

2.3.1 Specification

We provide a definition for Shared Structure Similarity sspX,Y q. To find the similarity between
language X and language Y , we consider the normalized average tree distance between all parallel
sentence pairs within the PUD dataset. In order to find the distance between two trees, we utilize
ordered Tree Edit distance (Zhang and Shasha, 1989). Tree Edit Distance (TED) is a generalization
of Levenshtein string edit distance to ordered trees, where left to right order is important (such as
with sentences). It describes the minimum number of edits (in this case, insertions, deletions, and
replacements) to transform a tree x P X into a tree y P Y .

Figure 3: Visualization of a tree x P X being edited into a tree y P Y
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In order to convert a CoNLL-U tree into one we can perform TED on, we swap node labels from
words to UPOS labels: Universal Parts of Speech tags. Thus, nodes representing the same part of
speech can be preserved through editing. We also perform other transformations as necessary to
our tree representation (such as formatting in depth-first-search order) so we can apply our tree edit
distance algorithm.

With these trees, we iterate through all pairs px, yq P X ˆ Y , and find the average TED of our
transformed CoNLL-U trees. (Note that we use standard TED, in which all edits are weighted equally.
This should be addressed in future work.) Let T pxq represent the transformation from a sentence x
to the tree representing it. Next, we normalize this value between 0 and 1. To do this, we use the
following:

sspX,Y q “ exp

ˆ

´
1

λ
¨ d

˙

where d represents our average edit distance, and λ represents some normalization constant. (Experi-
mentally, we set this constant to be equal to the max average edit distance between languages.) Thus,
we can formally represent our Shared Structure Similarity ss(X,Y) as:

sspX,Y q “ exp

˜

´
1

λ
¨

ÿ

xPX,yPY

TEDrT pxq, T pyqs { |X|

¸

where we divide by the size of our sentence bank |X| to generate an average TED.

2.4 Embedding Similarity

Finally, we propose (but do not implement due to time constraints) Embedding Similarity. In search
of the most natural representation of a language, free from human encoding as features or even as
tree-structures, we can automate the encoding process entirely with an algorithm. We propose the
usage of a machine learning model to construct a latent space with which we can compare languages.
With this latent space, we can form "Language Vectors," conceptually equivalent to word vectors but
representing languages. We can then compare languages X and Y through the cosine similarity of
their vector representations:

SCpX,Y q “
X ¨ Y

}X}}Y }

where “¨" represents the dot product.

To construct this latent space, we could use the pre-training task of classifying languages: given
some very large sentence bank, we could train a machine learning model to classify what lan-
guage sentences belong to. Using this to construct our latent space, we could find vectors that
represent a given language through some aggregation of the sentence vectors corresponding to that
language (for example, we could average all the sentence vectors in a given language, perhaps
first pruning outliers, to generate a language vector). We could also use existing model archi-
tectures to perform this task, such as the LangId model made by the Stanza group at Stanford
(github.com/stanfordnlp/stanza/blob/main/stanza/models/langid/model.py).

However, this method may violate some of our guiding principles for good language similarity
metrics: it may easily overfit or construct a low-dimensional representation of the languages that
works for differentiating between them but is not suitable for accurate language vector similarity.

2.5 Evaluation

In order to check the efficacy of our similarity metrics, we create rudimentary "sanity-check" metrics
that we can compare against. One such metric is the Shared Geography metric, sgpX,Y q for two
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languages X and Y . This metric is calculated simply, as:

sgpX,Y q “
?

distance between X and Y

We take the square root of the distance based off of the assumption that languages disperse roughly
evenly from a center point, and thus the effect of languages on one another will not be linear with
distance but rather falloff as a function of area.

Next, we compare this Shared Geography metric with our similarity metrics by finding the correlation
between our root distance and similarity. (In actuality we compare this with dis-similarity, or negative
similarity, as this should increase with distance.) We do this by calculating by Pearson product-
moment correlation coefficients, and then selecting the relevant matrix entries. For comparing with
Shared Feature Similarity, we use consider all pairwise similarities of the top 15 languages with
the most measurements. For Shared Structure Similarity, we compare with all pairwise similarities
available (441 datapoints).

3 Results and Discussion

The results of our various experiments are presented in the graphs below.

Figure 4: Graph of language similarity to English based upon Shared Feature Similarity
Experiments here compare the 15 languages that have the most measurements listed in the WALS
data set. Conducted as an initial test to see if results were reasonable, we ordered all 15 languages by
the closeness of their feature set to English. The result does match intuition, with German and French
being fairly closely related to English while Japanese, Amele, and Basque are more distantly related.
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Figure 5: Shared Feature Similarity of the top 25 most measured languages.
This figure illustrates the similarity of the 25 most measured languages based upon Shared Feature
Similarity. They are ordered (roughly) by their geographical distance to English to illustrate structure
out of block-matrices.
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Figure 6: Graph of language similarity to English based upon Shared Structure Similarity
Experiments here compare all of the languages in the PUD data set to English. Conducted as an
initial test to see if results were reasonable, the result does roughly match intuition, with Spanish and
German being fairly closely related to English while Japanese and Hindi are more distantly related. It
is worth noting that the results are still somewhat different from those in Figure 4.

Figure 7: Shared Structure Similarity 21 languages in the PUD dataset.
This figure illustrates the similarity of the 21 languages in the PUD dataset based upon Shared
Structure Similarity. They are ordered (roughly) by their geographical distance to English to illustrate
structure out of block-matrices.
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Figure 8: Relationship between Feature Similarity and Structure Similarity
As noted earlier, both the Feature Similarity and the Structure Similarity rankings of languages against
English roughly match intuition. However, they do provide different rankings. This is to be expected
since the methods they use are so distinct. Here languages are being compared with both methods
and the correlation between those methods graphed. Each dot is a single language comparison (such
as Japanese vs. Mandarin). The overall result reflects a correlation of 0.577 between the two different
systems of similarity assessment.
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Figure 9: Feature Dis-Similarity vs. Square root of geographic distance
Based upon the assumption that languages originating more closely geographically will be more
closely related (and, conversely, those that are more distant geographically will be less closely related)
we attempted to use geographic location as a simple test for the (rough) validity of our approach
based upon the WALS database. We found a 0.719 correlation, suggesting that the Feature Similarity
does relate to actual language similarity.
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Figure 10: Structure Dis-Similarity vs. Square root of geographic distance
As with the Feature Dis-Similarity graph earlier, we attempted to use geographic location as a simple
test for the (rough) validity of our approach — structure dis-similarity in this case. We found a 0.532
correlation, suggesting that the Structure Similarity does relate to actual language similarity.
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Figure 11: 3-Dimensional scatterplot
This graph demonstrates the relationship between all three metrics that have been examined, Structure
Similarity, Feature Similarity, and the square root of geographical distance.
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4 Extensions

Due to the limited time and resources available, and the richness of the subject matter, we were unable
to explore many possible extensions to the current work. Below are listed a few of the additional
directions we would like to pursue.

Combining IPA and Structural Edit Distance: In an effort to incorporate insights from both phonetic
variation and structural variation, we could combine IPA edit distance with structure tree edit distance.
We would need to (among other challenges) determine an appropriate weighting α and 1 ´ α for the
two measurements so that the combination would be maximally meaningful.

Weighting IPA Phoneme Transitions: Currently most IPA edit distance assumes that all phonetic
edits are of equal significance, or have very rudimentary weighting (either 0.5 or 1). But, of course,
not all phonemes are equally dissimilar. A transition between phoneme A and phoneme B might be
much less probable (and hence should be weighted more heavily) than a transition between phonemes
A and C. We would like to construct a model which uses much finer granularity of weights for
phoneme transitions.

Vector Representation of Languages: Completing the implementation, and subsequent testing of the
algorithm described in section 2.4.

Python Library of Tools: Several tools have been created in the development of this work. There
may be value in making a python library of these tools and sharing them publicly.

Weighted Tree Edit Distance: Much as not all phoneme transitions are equally probable, not all
structural changes (and differences) are equally probable. As such the elements of tree edit distance
should be weighted differently. Doing so would represent an improvement over the work described
in this paper (where currently all tree edits are weighted equally, and use the default set of edit
operations).

In-Between Languages and Language Continua: By thinking of languages as lying on a continuum
of similarity, and understanding the manipulations that can move languages along that continuum, one
can create languages at arbitrary points between existing languages. This is one of the abilities that
edit distance based methods allows. This enables a rich set of possibilities in which the approaches
for continuous features and functions can be applied to languages that have, hitherto, been considered
strictly as discreet (if ill defined) entities.

Reference Standard: It is challenging to assess the accuracy of language similarity assessments. If
there was some better standard to measure against, or if we could create a better standard to measure
against, that would enable us to improve our algorithms and to compare approaches. Candidates
include: leveraging maps of degrees of mutual intelligibility (assuming such maps exist), looking at
existing maps of language evolution, creating a standard from agreement between experts in the field,
and more.

Setting Weights for Feature Similarity: Some language features are less common than others. As
such, when computing language similarity, sharing less common features should weigh more heavily
than sharing more common ones. Although setting the weights based upon the commonality of the
feature may be valid, another approach may also be valid. Assuming the existence of a reference
standard (as described above), we could set the weight of the shared features such that the resulting
similarity assessments match the reference standard.

This could be done through a multitude of classical search methods, optimizing the following: we
seek a set of weights Ŵ Ă twiu such that the loss l “ rsfpX,Y q ´ metricpX,Y qs2 (where ss denotes
Shared Feature similarity) is minimized:

Ŵ “ argmin
WĂtwiu

tlpW ;X,Y qu
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Then those weights could be applied to language pairs not yet assessed.

Phoneme Histogram Comparison: The frequency of phoneme usage may provide a fingerprint for
any given language. The distance between such histograms might form a basis of comparison to
assess language similarity.

5 Conclusion

Language is as multidimensional as the billions of people who use it. It is a product of unique needs
and circumstances across all of human history. While it is impossible to represent them fully, when
comparing languages we need to represent as many of their important dimensions as possible. In this
paper we have attempted to go beyond strict Lexical Analysis and open the door to the beginnings
of Language Analysis. While there is much more to be done, we hope that the work done here will
prove useful and, maybe, inspire future efforts.
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Appendix

Code can be found in https://github.com/TheEnquirer/LangDist
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