Faster Auto-Regression <+ Smarter Diffusion: Towards a Unified Parallel
Token-Processing Framework

Brandon Cho'
Princeton University

Abstract

Masked diffusion models such as LLaDA have
emerged as a prominent alternative to autore-
gressive models (ARMs), speeding up the infer-
ence process in language models by allowing
for many tokens to be generated simultaneously
via an iterated unmasking process. Neverthe-
less, many existing models take a naive ap-
proach to masking, either unmasking a fraction
of tokens randomly or after sorting by model
confidence. Inspired by recent work on spec-
ulative decoding, we seek to improve on the
unmasking process by introducing an external
“scorer model” that evaluates each token gen-
erated at each time step in parallel. From a
diffusion-first perspective, this effectively al-
lows us to take an existing pretrained autore-
gressive frontier model, and utilize the intel-
ligence of this model in parallel to improve
on diffusion models. From an autoregressive-
first perspective, this method allows us to ap-
proximate speculative decoding by treating our
diffusion model as our draft model. We show
that model performance on certain reasoning
benchmarks remains invariant even after replac-
ing the unmasking procedure at a majority of
inference time steps with one based on an au-
toregressive scorer model. You can find a quick
demo video of this architecture in action here,
and the code that supports this here.

1 Introduction

Most frontier large language models (LLMs) are
autoregressive models—that is, they perform next-
token prediction using Transformers on a sequence
x of length N via the model distribution

N
p(x;0) = [[p(zjlz1, ... 2j-150).
j=1

Under this paradigm, tokens are predicted serially,
with all previously-generated tokens used as con-
text when predicting each subsequent token. Past

"Equal contribution.

Jerry Han'
Princeton University
brandon.cho@princeton.edu jerryhan@princeton.edu

Huxley Marvit'
Princeton University
huxley@princeton.edu

work has shown that performance on a wide va-
riety of tasks improves as autoregressive models
become larger (Brown et al., 2020). However, be-
cause the time complexity of naive approaches to
next-token prediction in Transformer-based mod-
els scales quadratically with respect to sequence
length, much recent work has been done to find effi-
cient ways to speed up the inference process in such
models. Work in this vein includes FlashAttention
(Dao et al., 2022), which proposes an 10-aware
exact attention algorithm designed to minimize ex-
pensive GPU memory operations, and Medusa (Cai
et al., 2024), which uses multiple decoding heads
in parallel to generate and verify multiple poten-
tial completions simultaneously. The magnitude of
the speedup obtained via Medusa (and to a some-
what lesser extent, traditional speculative decoding
methods) suggests that parallel token generation
of some kind is a promising method to improve
inference speed in current large language models.

Recently, however, text diffusion models have
begun to appear as a viable alternative to tradi-
tional autoregressive frameworks (and variations
thereof), promising rapid inference-time speedups
by generating multiple tokens simultaneously and
non-serially (Nie et al., 2025b,a). Commercial ap-
plications such as Inception Labs’ Mercury Coder
claim to achieve similar performance to major fron-
tier models (including Claude 3.5 Haiku and GPT-
40 Mini) on well-known code benchmarks such
as HumanEval while producing over 5x as many
output tokens per second (Inception Labs, 2025;
Chen et al., 2021).

With this in mind, we present two perspectives
on our proposed architectural change: incorporat-
ing autoregressive models as scorers during the
re-masking phase found in many state-of-the-art
masked diffusion models.

https://www.youtube.com/watch?v=aYnkOHSz_mU
https://github.com/jerryhan60/cos484

AR LLM Diffusion LLM

t=0 =

1 SS-35_5°5°=2

2 ===35_2_=7:2

5.2% done... Complete!

Figure 1: Autoregressive models must generate tokens
one by one, while masked diffusion models may gener-
ate multiple tokens simultaneously and out of order.

1.1 Autoregressive-Model-First Perspective:
Diffusion for Speculative Decoding

Speculative decoding has emerged as a power-
ful technique for dramatically speeding up large
ARMs (autoregressive models). It works by having
a smaller and cheaper “draft” model predict tokens
ahead of the large model. Then, all of these tokens
can be verified in parallel by the large model (for
the time cost of generating only a single token)
(Leviathan et al., 2023). If the draft model can gen-
erate 3 tokens in the time it takes the large model to
generate one, for instance, then this speculative de-
coding setup effectively converts to roughly a 3x
speedup over just using the large model to perform
inference.

However, speculative decoding is a relatively
new technique. The natural first step for creating
this draft model is to use a distilled version of the
large model, and this is in fact what most specula-
tive diffusion setups still use. However, this is by
no means a requirement — the draft model can use
any architecture. Furthermore, the draft model’s
task is now fundamentally different to that of the
large autoregressive model: tokens can be gener-
ated incorrectly at a much lower cost, as they are
guaranteed to go through verification.

Thus, it is very possible that there are better ar-
chitectures for this draft model. We propose one
such new draft-model architecture: diffusion mod-
els. Diffusion models are naturally suited to this
task because they can generate all tokens in paral-
lel, effectively acting as an instant draft model. (Do
note, however, that our setup only approximates
speculative decoding, as we do not guarantee the
same output as without this optimization). Ide-
ally, one would distill a large ARM into a diffusion
model. As a proof of concept, we first test without
distillation on an out-of-the-box pretrained diffu-
sion model.

Based on the chosen “confidence threshold” (or
number of steps), which determines based on
the large verifier model how many draft model-
produced tokens to keep at each timestep, this setup
effectively allows a tunable tradeoff between speed
and output quality for large ARMs. In the accu-
racy limit, this setup would effectively fully (or
near-fully) parallelize any autoregressive model.

1.2 Diffusion-First Perspective: Large ARM
as Masker

Diffusion models have incredible promise. How-
ever, there is much training to be done before these
diffusion models even have the chance to reach
near the performance or size of frontier models.
However, we can possibly improve the output qual-
ity (at the cost of a minor sacrifice in speed) by
"piggy-backing" on larger pretrained autoregres-
sive models. As opposed to the classical paradigm
where tokens generated by a diffusion model are
re-masked based on the diffusion model’s confi-
dences, we propose an architecture where the to-
kens are remasked based on the confidences of
an existing large pretrained autoregressive model,
which can be calculated in parallel over all the
diffusion-model generated tokens. In theory, this
forms a slower (since there is now the added cost
of one ARM forward pass per diffusion step), but
higher output quality diffusion model. (This is,
once again, a tunable tradeoff).

1.3 Aggregate Perspective

While both these perspectives offer conceptual
power, they are referring to the same architecture.
This architecture combines diffusion models and
large pretrained ARM to create a tunable tradeoff
between model speed and output quality. In this
work, we conceptualize, implement, and then evalu-
ate this novel architecture, and lay the groundwork

for what future research would need to be done to
convert this architecture from a successful proof-
of-concept to a production-ready architecture.

2 Related Work

Our work relies heavily on existing studies on
masked diffusion models and speculative decoding
for both inspiration and implementation details.

2.1 Speculative Decoding

Recent work on speculative decoding has proposed
using multiple language models in tandem to ac-
celerate inference without sacrificing quality. In
a typical setup, a smaller draft model is used to
quickly propose one or more candidate tokens, and
a larger, more accurate target model then verifies
these candidates in a single pass (Leviathan et al.,
2023). This approach allows several tokens to be
generated per iteration instead of the standard one
token at a time, significantly reducing latency. In
fact, it was formally demonstrated that specula-
tive decoding can accelerate generation by 2-3x on
large Transformers (e.g. T5-XXL) while producing
identical outputs to standard greedy decoding.

2.2 Masked Diffusion Models

Prior work on masked or non-autoregressive
diffusion-style language models has similarly
aimed to speed up text generation by predicting
multiple tokens in parallel and iteratively refining
uncertain positions.

A representative state-of-the-art example is
LLaDA (Nie et al., 2025b), a large language diffu-
sion model with 8B parameters trained from scratch
that rivals LLaMA3 8B in performance and vali-
dates the viability of masked diffusion models as
an alternative generative paradigm.

LLaDA is pretrained on text with random masks
applied independently to all tokens at the same ra-
tio t ~ U|0, 1]. LLaDA employs a standard Trans-
former architecture as the mask predictor, without
causal masks as its formulation allows it to see
the entire input to generate predictions. During
generation, LLaDA masks all tokens and then gen-
erates text by simulating a diffusion-style reverse
process from an entirely masked sequence to a fully
unmasked output. At each timestep, the mask pre-
dictor model predicts all currently masked tokens
in parallel, conditioning on the visible context to
fill in possible values. After each prediction step, a
flexible remasking strategy is deployed to re-mask

out a certain fraction of tokens, and the model re-
peats the prediction based on the updated sequence.
This process continues for a fixed number of itera-
tions or until no masks remain. When performing
inference with LLaDA, one must set in advance
the number of tokens to be generated (the sequence
length L) as well as the number of steps N over
which this reverse process is to take place.

A key difference among masked generation
methods lies in the strategy for selecting which
tokens to unmask or remask at each iteration. As
mentioned in (Nie et al., 2025b), the remasking
strategy should in principle be purely random. The
authors also implement low-confidence remasking,
which involves remasking a proportion of predicted
tokens with the lowest confidence based on the pre-
dictions and often proves to be more effective than
random remasking. By focusing on the most un-
certain positions, this strategy can improve final
accuracy and convergence in fewer iterations.

3 Methodology

Despite the progress in masked diffusion models,
the criterion for unmasking has largely been limited
to such internal heuristics (random or the model’s
own confidence). The novelty of our approach is to
introduce a separate scorer model into the unmask-
ing schedule — essentially a secondary model that
evaluates partially generated sequences to decide
which mask to reveal next. This is conceptually
akin to the verifier model in speculative decoding,
but applied to a masked parallel decoding context.
By leveraging an external scorer to guide token
selection, our method departs from prior schedules
that are either unguided or self-guided. As we will
show, this scorer-based unmasking strategy allows
the system to prioritize masks whose resolution
will yield the greatest improvement (according to
the scorer’s judgment), leading to more efficient
diffusion iterations. See Figure 2 for a visual repre-
sentation of this process.

More precisely, our modified algorithm is
described in Algorithm 1, and we use the
log-probabilities extracted from Qwen-2.5-1.5B-
Instruct as our scorer model (Qwen et al., 2025).

4 Results
4.1 Replication

To ensure that we can achieve similar baseline re-
sults when applying the default low-confidence
unmasking strategy as in (Nie et al., 2025b),

prompt 1. start with fully masked tokens
t=0: ElElElEbalalaEdEDd .
' 2. predict all masked E
H o q g T
: tokens simultaneously diffusion LLM J ' g
[H
: | Potential tokens P
: SIS
o ENENERERERERERED : :
T J o=
- =
2 3. score all tokens [ccorer J o
: simultaneously PES
! =
4. choose tokens to keep, E 5
and remask the rest B
__ 8
" 2
(e R

Figure 2: A visual representation of our scorer-based remasking process.

Beginning with a sequence of L

fully-masked tokens, we first use the LLaDA weights to generate L potential tokens. After scoring all tokens
simultaneously using the scorer model, we select the top L/N tokens to keep unmasked and remask the remaining
tokens for the next time step. Note that, we swap the "scorer" block for an external autoregressive model, on which
we use batch-inference to run in parallel to produce our confidence scores.

we replicated benchmark results on a variety of
general-purpose and reasoning tasks, including
ARC-Challenge (Clark et al., 2018), Hellaswag
(Zellers et al., 2019), Truthful QA (Lin et al., 2022),
PIQA (Bisk et al., 2020), HumanEval (Chen et al.,
2021), and GSMS8K (Cobbe et al., 2021). In each
case, we evaluated LLaDA-8B-Base on a subsam-
ple of 200 test-set instances (except for HumanEval,
which only had 164 test-set examples in total) us-
ing 1m-eval (Gao et al., 2024); the results of this
may be found in Table 1. All values in the table are
pass@1 metrics. With the exception of Hellaswag,
our replication was able to achieve accuracy scores
within a few percentage points of those reported
in the original LLaDA paper, indicating that our
evaluation methods are, on the whole, compara-
ble to those conducted internally by Nie et al. We
chose not to use the associated LLaDA-8B-Instruct
model due to known discrepancies between inter-
nal evaluation procedures and the results produced
by 1m-eval; see the Github repository associated
with (Nie et al., 2025b) for more information.

See Figures 3 and 4 in Appendix C for a visual-
ization of intermediate steps in the diffusion-based
token generation process.

Benchmark Reproduction Original
ARC-C 0.425 0.479
Hellaswag 0.610 0.725
Truthful QA 0.430 0.464
PIQA 0.730 0.744
HumanEval 0.335 0.335
GSMS8K 0.695 0.707

Table 1: Replication of baseline results (in the “Origi-
nal” column) from (Nie et al., 2025b) obtained via an
unpublished internal toolkit. All “Reproduction” results
were obtained using the LLaDA-8B-Base model with
the low-confidence remasking strategy, setting genera-
tion length L = 256 and number of steps N = 256.

4.2 Impact of Remasking Strategy

We investigated the impact of running different
remasking strategies (random remasking, low-
confidence and scorer-guided) on the HumanEval
benchmark, see Table 2.

The importance of the remasking strategy is
demonstrated by the stark performance difference
between the random and low-confidence strate-
gies. It is evident that a more informed selection of
which tokens to remask leads to a more effective
reverse diffusion process. This partially motivates

Algorithm 1 Scorer-Guided Generation [adapted
from (Nie et al., 2025b)]
Require: mask predictor pg, scorer model gy,

prompt pg, answer length L, sampling steps
N

1: r1 ¢ fully-masked sequence of length L.

2: for t < 1 down to % step % do

3 s 1— %

4 fori < 1to L do

5: if r/ # M then

6: ré <+ rf © token already visible

7 else

8 ré « arg max pg(l‘ | pg,rt)

9 end if

10: end for

11: fori < 1to L do

12: ¢ qd)(rg | po, TO) > scorer
confidence

13: end for

14 ng + |L(1—s)| > # tokens to remain
unmasked at step s

15: for: < 1to L do

16: if ¢’ € Lowest p,, ({¢/ JL:1) then

17: ré M > re-mask 7yn
lowest-scored tokens

18: end if

19: end for

20: Ts < T

21: end for

22: return rg

why we considered using a scoring model to further
inform our selection of tokens to remask.

However, we noticed that the scorer-guided
strategy actually does much worse than the low-
confidence strategy, which we attribute to model
collapse in the early stages of the generation pro-
cess. In particular, we observed that in many in-
stances the mask predictor predicts long consecu-
tive runs of whitespace tokens at the start of the
process because most of tokens start off as masked.
These long runs of whitespace tokens are often eval-
uated to have high confidence scores by our scorer
models; this is because conditioned on a prior spec-
ulated run of whitespace, the scorer model tends to
evaluate a high likelihood of seeing another whites-
pace token. Eventually this collapses to simply pro-
ducing a wholly whitespace output; see Appendix
A for an example of this phenomenon.

In order to verify that this is what was occur-

Method Percentage
Random 10.4%
Low-confidence 33.5%
Scorer-guided 15.2%

Table 2: Performance by remasking strategy

ring within our scorer model, we also examined the
scorer model outputs at each iteration of the diffu-
sion process. We observed that as the scorer model
evaluates long strings of whitespace or newline (\n)
tokens, it assigns uniformly high scores to all of
the tokens in the string that are usually orders of
magnitude larger than those of the non-whitespace
tokens generated at the same timestep.

4.3 Ablation Studies

Given that model collapse occurs when exclu-
sively using the scorer-based unmasking strategy
across all time steps, we performed an ablation
study to better understand combinations of the low-
confidence remasking strategy found in (Nie et al.,
2025b) with our scorer model. More specifically,
we tested benchmark performance for LLaDA-8B-
Base when using the low-confidence strategy for
the first p proportion of inference steps and the
scorer model for the remaining (1 — p) proportion
of steps. This yielded the results in Table 3.

From these results, we observe performance
comparable to LLaDA-8B baselines on code-
generation and mathematics benchmarks when us-
ing a scorer model-based remasking algorithm for
at least 40% to 50% of the total number of infer-
ence steps. This is a surprising result—given that
outputs to prompts in HumanEval are evaluated
by running the generated code against a set of pre-
determined test cases, an incorrectly generated to-
ken at any point in the output string may prevent
the resulting code from compiling at all. This fur-
ther reinforces the notion that as long as a small
proportion of tokens are “set” by the default low-
confidence remasking process, our scorer model is
able to avoid model collapse and fill in the remain-
ing ~60% of tokens at a similar performance level
as the default procedure.

5 Discussion

5.1 Conclusion

In conclusion, we have introduced scorer-guided
remasking as a novel extension to masked diffu-

Proportion p HumanEval GSMSK
(baseline) 1.0 0.335 0.695
0.8 0.335 0.690
0.6 0.341 0.695
0.5 0.341 0.675
04 0.317 0.615
0.2 0.329 0.500
(only scorer) 0.0 0.152 0.200

Table 3: Ablation results. p represents the proportion of
low-confidence remasking steps taken before switching
to our scorer-model based remasking strategy. All val-
ues are pass@1 metrics obtained by testing against all
164 examples from HumanEval and a subset of 200
examples from GSMS8K, with both sequence length
L = 256 and number of iterations N = 256.

sion language models inspired by the verification
models introduced in the speculative decoding lit-
erature. In doing so, our work bridges the gap
between autoregressive and diffusion-based gener-
ative frameworks.

We observed potential issues with using purely
scorer-guided remasking; namely that our model
collapses to producing repetitve output. We
counter this by introducing hybrid remasking strate-
gies that blend scorer-guided remasking with low-
confidence remasking. Our experimental results
validate the effectiveness of the proposed frame-
work, and that even when incorporating scorer-
guided remasking we are able to attain similar
accuracy scores on the HumanEval and GSM8K
benchmarks (and higher accuracies in some cases).

5.2 Limitations and Future Work

While we have presented first steps towards ex-
ploring a novel combination of Transformer-based
diffusion and autoregressive models inspired by
speculative decoding, much work remains to be
done to fully ascertain the potential of this idea.

We observed model collapse when only using
scorer-guided remasking, which we averted by per-
forming low-confidence remasking first, and then
switching to scorer-guided remasking only after
some tokens have been placed in. We suspect that
the following adjustments may help prevent model
collapse, which may be worth implementing in fu-
ture studies:

1. To truly realize the power of this system, it
should be trained within this setup. A fine-
tuning run to effectively "distill" the large au-
toregressive model into the diffusion "draft"

model could lead to massive benefits. We aim
to complete this step next.

2. Rather than using Qwen-2.5-1.5B-Instruct as
our scorer model, we should use a bidrectional
encoder model. This is because in our set-
ting the scorer should assign (in a single for-
ward pass), a well-calibrated confidence score
to every visible token in the partially-filled
sequence. A bidrectional (masked-language-
model) encoder is a better fit than an autore-
gressive decoder such as Qwen, because they
calibrated more closely to the task at hand.
We used Qwen because it shares the same to-
kenization scheme as LLaDA; if we were to
use a bidirectional encoder, we would have to
match their tokenization schemes.

3. Regularization methods, including penalizing
consecutive runs of whitespace when scoring
the diffusion model output.

Given the compute limitations inherent to the
project and the size of the models we were work-
ing with, we were unable to fine-tune either the
scorer or the base diffusion models on each others’
outputs, nor were we able to fine-tune the scorer
model on the unmasking task itself. These remain
fruitful directions for future work on this subject,
which we intend to pursue.

References

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, et al.
2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS °20,
Red Hook, NY, USA. Curran Associates Inc.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, et al. 2021. Evaluating large
language models trained on code.

http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. 2024.
The language model evaluation harness.

Inception Labs. 2025. Introducing mercury, the
world’s first commercial-scale diffusion lan-
guage model. https://www.inceptionlabs.ai/
introducing-mercury.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, Dublin,
Ireland. Association for Computational Linguistics.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian
Liu, Guangtao Zeng, Min Lin, and Chongxuan Li.
2025a. Scaling up masked diffusion models on text.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang,
Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong
Wen, and Chongxuan Li. 2025b. Large language
diffusion models.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, et al. 2025.
Qwen2.5 technical report.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

1

.

4

5

A Example of model collapse for
HumanEval

When running our pure scorer-guided remasking
model on HumanEval, our model often exhibits
model collapse and outputs only whitespace. See
below.

Prompt
from typing import List

def separate_paren_groups(paren_string: str) ->
List[str]:
Input to this function is a string
containing multiple groups of nested
parentheses.
Your goal is to separate those groups into
separate strings and return the list of
those.
Separate groups are balanced (each open
brace is properly closed) and not nested
within each other.
Ignore any spaces in the input string.

>>> separate_paren_groups(’ () (()) (()(
)7
o,

nnn

(O, O]

your implementation here

Model Output

[2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n. ..’]

B Scorer model implementation

Below is the PyTorch implementation for our scorer
confidence function.

@torch.no_grad()
def scorer_confidence(seq, scorer_model):

nnn

Returns P(seq[i] | seql:i]) for every i >=
1.

seq : (B, L) -- the xfilled* candidate
sequence.
out : (B, L) -- probability of each token

under scorer model.

out[:, @] is set to 1.0
because the model never

predicts the first token
(it’s conditioned on BOS).
logits = scorer_model(seq).logits
(B, L, V)

The logit at t predicts token at t, so
compare logits[:, t-1] with seq[:, t]
probs = torch.softmax(logits,
dim=-1).to(torch.float64) # (B, L, V)

Shift: targets are seq[:, 1:1, predictors
are probs[:, :-1]

http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
https://doi.org/10.5281/zenodo.12608602
https://www.inceptionlabs.ai/introducing-mercury
https://www.inceptionlabs.ai/introducing-mercury
http://arxiv.org/abs/2211.17192
http://arxiv.org/abs/2211.17192
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
http://arxiv.org/abs/2410.18514
http://arxiv.org/abs/2502.09992
http://arxiv.org/abs/2502.09992
http://arxiv.org/abs/2412.15115

tgt = seql[:, 1:]

(B, L-1)
predProb = torch.gather(

probs[:, :-1], #
(B, L-1, V)

_‘l’

tgt.unsqueeze(-1) #
(B, L-1, 1)

) .squeeze(-1) #

(B, L-1)

Pad the first position (no prediction

available) with probability 1

bos_pad = torch.ones(seq.size(@), 1,

dtype=predProb.dtype,
device=predProb.device)

return torch.cat([bos_pad, predProb],

dim=1) # (B, L)

C Example comparisons of scorer-based
diffusion models and autogressive
models

In Figures 3 and 4, the green text denotes tokens
generated in a previous unmasking step, while
red text denotes tokens generated by the diffusion
model in the current step that are to be evaluated
by the scorer model.

Default Qwen-0.5 (Slow) ———— — ———— Speculative Diffusion (Ours)
In the heart of the forest,

Where the green

Figure 3: A comparison of our scorer-based remasking method with a sample of where an autoregressive model
would be at Step 13 of the iteration process.

Default Qwen-0.5 (Slow) —MM Speculative Diffusion (OQurs) ———
In the heart of the forest,

Where the green meets the gold,

Nature and the silence

Figure 4: A comparison of our scorer-based remasking method with a sample of where an autoregressive model
would be would be at Step 30.

